Cambridge Entomological Club, 1874
PSYCHE

A Journal of Entomology

founded in 1874 by the Cambridge Entomological Club
Quick search

Print ISSN 0033-2615
This is the CEC archive of Psyche through 2000. Psyche is now published by Hindawi Publishing.

R. Beckers, S. Goss, J. L. Deneubourg, and J. M. Pasteels.
Colony size, communication, and ant foraging strategy.
Psyche 96(3-4):239-256, 1989.

This article at Hindawi Publishing: https://doi.org/10.1155/1989/94279
CEC's scan of this article: http://psyche.entclub.org/pdf/96/96-239.pdf, 1408K
This landing page: http://psyche.entclub.org/96/96-239.html


The following unprocessed text is extracted automatically from the PDF file, and is likely to be both incomplete and full of errors. Please consult the PDF file for the complete article.

COLONY SIZE, COMMUNICATION AND
ANT FORAGING STRATEGY*
BY R. DECKERS, S. Goss, J. L. DENEUBOURG, J. M. PASTEELS Unit of Behavioural Ecology, C.P. 23 1,
Universitk Libre de Bruxelles, 1050 Bruxelles, Belgium Some 12,000 ant species are known by now, with colony sizes ranging from a few individuals to 20,000,000 individuals. What con- straints does this vast range of colony sizes place on the systems of organisation that they use? Alternatively, how does this range of colony sizes reflect the different systems of organisation used? We shall examine these questions in relation to ant foraging strategy, which as well as being the most visible aspect of their activity illus- trates most clearly the roles and limits of communication in their collective behavior.
This paper aims to verify a prediction of the following hypothesis (Pasteels et al. 1985; Deneubourg et al. 1986). In theory, the organi- zation of a small insect society can rely on most individuals at any moment "knowing", principally by learning, what it must do, where it must go, etc., and the workers' behavior has a strong determinist component. In a large insect society organization by individual learning is harder to achieve (Deneubourg et al. 1987). The workers' behavior is necessarily more random and their coordination becomes a major problem. To cope with this, a completely different organisational system is added to that already in place. This sup- plementary system is based on the complex collective structures, patterns and decisions that spontaneously emerge from simple auto- catalytic interactions between numerous individuals and with the environment, mediated by essentially chemical communication (see, e.g., Pasteels et al. 1987; Goss and Deneubourg 1989; Beckers et al. in press; Deneubourg et al, 1989, in press; Goss et al. 1990). The prediction that follows from this hypothesis is that the larger the colony size, the less foraging is individually based and the more *Manuscript received by the editor April 5, 1989. 239




================================================================================

Psyche [Vol. 96
the individual foragers are coordinated by mass chemical communication.
We shall use the following categories of foraging strategy that, as shall be discussed below, represent a crescendo of the integration of the individual forager into a network of communication: individual, recruitment, trunk trail and group hunting, their definitions being inspired by the work of different authors (e.g. Rosengren 1971; Wilson 1971; Leuthod 1975; Maschwitz 1975; Oster & Wilson 1978; Moffet 1988; Traniello 1989).
By individual foraging we mean foraging without systematic cooperation or communication in the discovery, capture or trans- port of prey items. Each forager leaves the nest, searches for food and transports it individually (e.g. Cataglyphis bicolor, Pachycon- dyla apicalis).
By foraging with recruitment, we mean that a scout having dis- covered a food item returns to the nest and transmits the informa- tion concerning its location to inactive foragers waiting in the nest. These recruits can become recruiters in their turn. It should be noted that recruiting species rely to a large extent on individual foraging for the discovery and exploitation of small sources. Roughly speaking, three recruitment types can be distinguished. With tandem recruitment, the scout guides one recruit to the food item, with or without trail laying (e.g. Leptothorax sp.). With mass recruitment, a trail laid by the recruiter while returning to the nest guides recruits to the food (e.g. Solenopsis invicta, Monomorium pharaonis). Invitation by the recruiter in the nest is often active. With group recruitment, the scout guides a group of nestmates, in some cases (if not all) laying a pheromone trail to the nest (e.g. Tetramorium caespitum, Camponotus socius). However, as every species that we know uses group recruitment also uses a more or less efficient mass recruitment, we shall refer to group/ mass recruit- ment. Note that some authors distinguish a fourth recruitment sys- tem, group raiding (type IV-Oster and Wilson 1978), which is characterised by a very strong invitation and recruitment trail that results in a large group of recruits leaving the nest together in a rush. We have included this system in group/ mass recruitment. With trunk trails, semi-permanent trails guide foragers to long- lasting food sources (e.g. many Formica sp.), and also serve as starting-off points for individual foragers, which may also recruit to



================================================================================

19891 Beckers et al. - Ant foraging strategy 24 1 the trunk-trails. Finally, group hunting foragers (sensu Moffet 1988, including army ants) leave the nest and forage collectively in a swarm along a well-defined trail system that is constructed as the swarm progresses (e.g. Dorylinae sp.).
These descriptions are by no means meant to be definitive, and there are of course species whose foraging does not fall neatly into one or indeed any of these categories. Nevertheless, as shall be discussed below, they represent a crescendo of the integration of the individual forager into a network of communication. Other recruitment systems are known to exist (such as short-distance recruitment or non-directional recruitment), but for lack of data have been omitted. Similarly, the colony sizes given are average figures, obtained by different techniques, and generally with rather small sample sizes. Polycalic societies pose a special problem. For these reasons, the values quoted must be considered only as first- order approximations.
Table 1 presents the colony size and foraging system of 98 differ- ent species. Fig. 1 presents the foraging system as a function of the colony size. Although that data base is small compared to the number of known ant species, a distinct trend is clear (note the logarithmic scale). The smaller societies rely on individual foragers that do not transmit their discoveries. The largest societies rely on permanent chemical communication between the individuals. Be- tween these two limits, one finds the different types of recruitment. Again, the smaller recruiting societies rely on a slow, individual recruitment, where a recruiter interacts directly with one or a few individuals. The larger recruiting societies rely on the faster mass recruitment, where one recruiter can interact via a chemical trail with a large number of potential recruits. The trail transmits both the position of the source and that of the nest to the recruits. Note that we have listed the species in Table 1 by alphabetical order for facility, and that the same tendency appears in each sub-family. Taking these results into consideration we propose two extreme blueprints for the way in which ants organise their foraging. The first blueprint consists of small societies which rely on the capacity for learning of its members to exploit the foraging area efficiently. Individual foragers, for example, develop fidelity to



================================================================================

242 Psyche [Val. 96
parts of their foraging area and can orient themselves over large distances (Wehner et al. 1983; Fresneau 1985). They do not interact directly with each other, nor do they communicate their food dis- coveries, yet they are capable of dividing the foraging area amongst themselves (Deneubourg et al. 1987). The society may be considered to have placed its complexity at the level of the individual. The second blueprint consists of large societies whose individual behavior may be considered as simple. They rely on a highly deve- loped network of chemical communication based on permanent trail-laying behavior to coordinate the foragers' activity and to aid their orientation. Their capacity for individual orientation is limited not only because it is not so needed as the trails are there, but also because too much individuality could prevent collective foraging from functioning efficiently. It is surely no coincidence that the largest and most chemically integrated societies, i.e. the different army ants and termites, are practically blind. The colony size is large, not simply to ensure that their "inefficient" workers manage to perform the necessary tasks by sheer weight of numbers (Oster and Wilson 1978; Herbers 1981), but because they need a large reserve of individuals for the amplifying mechanisms (e.g. recruit- ment) by which they structure their foraging to work (e.g. Pasteels et al. 1987). The society may be said to have placed its complexity more at the level of the interactions between individuals. Between these two extremes, we find intermediate sized societies which rely on individual scouts to forage small food items and on recruitment to amplify the information relating to important food sources. The sequence tandem/ group-mass/ mass is characterised by an increasing number of individuals that react to the recruiters' signals, and is associated with an increasing colony size. In mass recruiting species there is a tendency in the largest societies to lay trail pheromone not only when returning with food but also when leaving the nest and more or less continually in the foraging area (e.g. Pheidole militicida - Holldobler and Moglich 1980; fridomyr- mex humilis - Van Vorhis Key and Baker 1986; Aron et al. 1989). There is of course a large degree of overlapping between the different categories in fig. 1. This is to be expected whenever one tries to categorize nature, but is also the result of imprecision in our knowledge of colony size, which is anyway highly variable for a



================================================================================

Deckers et al. - Ant foraging strategy
243
Group Hunting
Trunk Trail
Mass
GroupIMass
Tandem
Individual
0 0%009<f9P0000~ w 0
A A A
Colony Size
Fig. I.
Foraging strategy as a function of colony size for 98 ant species (see Table 1). The arrows mark the 25,50 (median) and 75 percentiles. given species. Furthermore, others factors such as the size, distribu- tion and type of food exploited intervene, and ant foraging strategy and food type are obviously connected (e.g. Carrol and Janzen 1973; Traniello 1989).
Other less precise data confirm the tendency seen in fig. 1. For example we know that Crematogaster ashmeadi colonies are very large and that they use mass recruitment (Leuthold 1968a, b), whereas Bothroponera tesserinoda colonies are small and use tandem recruitment foraging.
The same overall tendency as shown here for ant species, also noted by Buschinger (1980) for dulotic ants, is well known in the Apidae. Species with small colonies, such as bumblebees, use an individual foraging strategy. Those with large colonies, such as honey bees, melipones and trigones, use recruitment (Lindauer and Kerr 1958; Seeley 1985). The tendency is also observed in terns (Erwin 1978).
We would like to end this paper with an appeal to readers to help us increase the size of our data base. We would welcome any infor- mation about colony size and foraging system, whether for species already in Table 1 or for any other ant species.



================================================================================

244 Psyche [vo~. 96
Table 1. Average colony size and foraging strategy of 98 ant species. The subfam- ilies (in brackets) are: 1 = Aneuretinae, 2 = Cerapachyinae, 3 = Dolichoderinae, 4 = Dorylinae, 5 = Formicinae, 6 = Leptanillinae, 7 = Myrmeciinae, 8 = Myrmicinae, 9 = Ponerinae, 10 = Pseudomyrmecinae. The foraging types are: I = Individual, TR = Tandem recruitment, GM = Group/Mass recruitment, MR = Mass recruitment, TT = Trunk trail, GH = Group hunting. Frg.
Species (subfamily) Nest Size Type References Acromyrmex landolti (8)
octospinosus
Aenictus laeviceps (4)
Amblyopone pallipes (9)
Aneuretis simoni (1)
Anomma nigricans (4)
wilverthi
Atta cephalotes (8)
sexdens
texana
Azteca foreli (3)
Camponotus aethiops (5)
pennsylvanicus
sericeus
truncatus
Cataglyphis bicolor (9)
cursor
Conomyrma bicornis (3)
Crematogaster sumicrasti (8)
Cyphomyrmex rimosus (8)
Daceton armigerum (8)
Diacamma rugosum (9)
Dinoponera australis (9)
quadriceps
Eciton burchelli (4)
hamatum
rapax
Ectatomma ruidum (9)
Jaffe pers. comm.
Blum et al. 1964;
Jaffe pers. comm.
Schneirla 1965
Traniello 1978; Lachaud
pers. comm.
Traniello and Jayasuriya 198 1 ;
Jayasuria and Traniello I985
Vosseler 1905
Raignier and van Boven 1955
Jaffe and Howse 1979;
Jaffe pers. comm.
Riley et al. 1974;
Jaffe pers. comm.
Moser and Blum 1963; Riley
et al. 1974; Jaffe pers. comm.
Jaffe pers. comm.;
Suzzoni pers. comm.
Pricer 1908; Traniello 1977
Holldobler et al. 1974
Suzzoni pers. comm.
Wehner et al. 1983
Cagniant 1983;
Lenoir pers. comm.
Jaffe pers. comm.
Jaffe pers. comm.
Blum et al. 1964;
Jaffe pers. comm.
Blum and Portocarrero 1965;
Jaffe pers. comm.
Fukumoto and Abe 1983
Fowler 1985
Dantas de Araujo pers. comm.
Schneirla 1957
Schneirla 1957; Rettenmeyer 1963
Sudd and Franks 1987
Lachaud et al. 1984
Erebomyrma nevermanni (8) 180 TT Wilson 1986



================================================================================

19891 Beckers et al. - Ant foraging strategy 245 Table 1. Continued
Frg.
Species (subfamily) Nest Size Type References Formica aquilonia (5)
bruni
cunicularia
fusca
lugubris
polyctena
pratensis
rufa
yessensis
Iridomyrmex humilis (3)
Lubidus praedator (4)
Lasius fuliginosus (5)
niger
Leptogenys chinensis (9)
ocellifera
Leptothorux acervorum (8)
am biguus
curvispinosus
duloticus
longispinosus
muscorum
nylunderi
unifasciatus
Messor barbara (8)
sancta
Monomorium pharaonis
Mvrmecia gulosa (7)
Myrmica rubra (8)
ruginodis
sabuleti
Zakharov 1978
Cherix and Maddalena-Feller
I987
Deffernez pers. comm.
Wallis 1964;
Moglich and Holldobler 1975
Rosengren 197 1; Breen 1979
Rosengren 197 1 ; Kruk-de-Bruin
et al. 1977; Horstmann I982
Rosengren 197 1; Jensen 1977
Gosswald 195 1 ; Rosengren 197 1
Ito 1973; Cherix 1987
Keller pers. comm.
Rettenmeyer 1963
Hainaut-Riche et al. 1980;
Quinet et Pasteels 1987.
Stradling 1970; Brian 1977
Maschwitz and Schonegge 1983
Maschwitz and Muhlenberg 1975
Dobrzanski 1966; Buschinger
197 1 ; Moglich et al. 1974;
Moglich 1979
Talbot 1965; Moglich 1979
Headley 1943; Talbot 1965;
Moglich 1979
Talbot 1957; Alloway 1979;
Moglich 1979
Headley 1943
Buschinger 1966; Moglich et al.
1974
Plateau pers. comm.
Lane 1977; Plateau pers. comm.
Delye pers. comm.
Delye pers. comm.;
Suzzoni pers. comm.
Peacock et al. 1955; Sudd 1960
Haskins and Haskins 1950;
Robertson 1971
Stradling 1970; Petal 1972;
Cammaerts and Cammaerts 1980
Stradling 1970, Brian 1972;
Cammaerts and Cammaerts 1980
Brian 1972;
Cammaerts and Cammaerts 1980




================================================================================

246
Table 1. Continued
Psyche [Vol. 96
Species (subfamily)
Myrmicaria eumenoides (8)
Myrmoteras barbouri (5)
tor0
Neivamyrex nigrescens (4)
Novomessor cockerelli (8)
albicetosus
Ocymyrmex barbiger (8)
Odontomachus bauri (9)
haematoda
Nest Size
troglodytes 240
Oecophylla longinoda (5) 480,000
Ophthalmopone berthoudi (9) 400
Ologomyrmex overbecki (8)
Pachycondyla apicalis (9)
caffraria
commutata
obscuricornis
villosa
Pheidole embolopyx (8)
fallax
pallidula
Pheidologeton diversus (8)
silenus
Pogonomyrmex badius (8)
occidentalis
Ponera eduardi (9)
Proatta butteli (8)
Pseudomyrmex termitarius ( 10) 75
triplarinus 10,000
Serrastruma lujae (8) 57
serrula 78
Frg.
Tvve References
Levieux 1983
Moffet l986a
Moffet 1986a
Topoff et al. 1980
Holldobler et al. 1978.
Holldobler et al. 1978.
Marsh 1985
Jaffe and Marcuse 1983
Holldobler and Engel 1978;
Jaffe pen. comm.
Dejean 1982;
Dejean and Bashingwa 1985
Way 1954;
Holldobler and Wilson 1978
Peeters and Crewe 1987
Moffet 1986b
Lachaud et al. 1984;
Fresneau 1985
Lkvieux 1967; Agbogba 1981
Mill 1982, 1984
Traniello and Holldobler 1984;
Fresneau 1984
Lachaud et al. 1984;
Lachaud pers. comm.
Wilson and Holldobler 1985
Law et al. 1965;
Jaffe pers. comm.
Detrain pers. comm.
Moffet 1988
Moffet I988
Brian et al. 1967;
Holldobler and Wilson 1970
Holldobler and Wilson 1970;
Erickson 1972
Lavigne 1969;
Holldobler and Wilson 1970
Le Masne 1952; Bernard 1968
Moffet 1986c
Jaffe pers. comm.
Jaffe pers. comm.
Dejean 1982
Dejean 1982




================================================================================

19891
Deckers et al. - Ant foraging strategy
Table 1. Continued
Species (subfamily)
Smithistruma emarginata (8)
truncatidens
Solenopsis invicta (8)
Tapinoma erraticum (3)
Tetramorium caespitum (8)
Trachymyrmex urichi (8)
Zacryptocerus varians (8)
Nest Size
Frg.
Type References
I Dejean 1982
1 Dejean 1982
MR Wilson 1962; Tschinkel 1987
MR Meudec 1979;
Verhaeghe et al. 1980
GM Brian et al. 1967;
Pasteels et al. 1987
MR Jaffe and Villegas 1985;
Jaffe pers. comm.
MR Wilson 1976; Jaffe pers. comm.
Drs. G. Delye, D. Fresneau, K. Jaffe, L. Keller, J. P. Lachaud, L. Plateau and J.-P. Suzzoni kindly sent us unpublished informa- tion. This work is supported in part by the Belgian program on interuniversity attraction poles and Les Instituts Internationaux de Physique et de Chimie.
The foraging strategy of 98 ant species is examined in relation to their colony size. Six foraging strategies are distinguished, namely indivdual, tandem, group/ mass and mass recruitment, trunk trail, and army ant type, and are seen to be associated with increasing colony size. This supports the hypothesis that the larger the colony, the more the individual worker is integrated into a network of chem- ical communication. Two extreme organisational blueprints are proposed. The first consists of small societies which rely on the capacity for learning of its members to exploit the foraging area efficiently. The second relies on the complex collective patterns that spontaneously emerge from chemically mediated recruitment pro- cesses interacting with the environment.



================================================================================

Psyche
[Vol. 96
ARON, S., J. M. PASTEELS AND J. L. DENEUBOURG 1989.
Spatial organisation in the Argentine ant, Iridomyrmex humilis (Mayr). Biol. Behav. 14: 207-217.
DECKERS, R., J. L. DENEUBOURG, S. Goss, AND J. M. PASTEELS In press.
Collective decision making through food recruitment. Ins. Soc. BUSCHINGER, A., W. EHRHARDT, AND U. WINTER 1980.
The organisation of slave raids in dulotic ants-a comparative study (Hymenoptera; Formicidae). Z. Tierpsychol., 53: 245-264. CARROL, C., AND D. H. JANZEN
1973.
Ecology of foraging by ants. Annu. Rev. Ecol. Syst., 4: 231-257. DENEUBOURG, J. L., S. ARON, S. Goss, J. M. PASTEELS, AND G. DUERINCK 1986. Random behaviour, amplification process and number of participants. How they contribute to the foraging properties of ants. Evolution, Games and Learning (D. Farmer, A. Lapedes, N. Packard and B. Wen- droff, eds.), 176-186, Physica D 22.
DENEUBOURG, J. L., S. Goss, J. M. PASTEELS, D. FRESNEAU AND J.-P. LACHAUD 1987.
Self-organization mechanisms in ant societies (11): Learning in foraging and division of labor. From Individual To Collective Behaviour In Social Insects (J. M. Pasteels and J. L. Deneubourg, eds.), 177-196, Birkhauser, Basel.
DENEUBOURG, J. L., S. ARON, S. Goss, AND J. M. PASTEELS In press.
The self-organizing exploratory pattern of the Argentine ant Irido- myrmex humilis. J. Ins. Behav.
DENEUBOURG, J. L., S. Goss, N. FRANKS AND J. M. PASTEELS 1989.
The blind leading the blind: modelling chemically mediated army ant raid patterns. J. Ins Behav. 2: 719-725. ERWIN, M.
1978.
Coloniality in terns: the role of social feeding. Condor 80: 21 1-215. FRESNEAU, D.
1985. Individual foraging and path fidelity in a Ponerine ant. Ins. Soc. 32: 109-1 16.
Goss, S. AND J. L. DENEUBOURG
1989.
The self-organisation clock pattern of Messor pergandei (Formicidae, Myrmicinae). Ins. Soc. 36: 339-246.
Goss, S., S. ARON, J. L. DENEUBOURG AND J. M. PASTEELS 1990.
Self-organised short-cuts in the Argentine ant. Naturwissenschaften 76. BERBERS, J. M.
1981. Reliability theory and foraging by ants. J. Theor. Biol 89: 175-189. HOLLDOBLER, B, AND M. MOGLICH.
1980. The foraging system of Pheidole militicida (Hymenoptera: Formicidae). Ins. Soc. 27: 399-415.
LEUTHOLD, R. H.
1968.
A tibia1 gland scent-trail and trail-laying behavior in the ant Cremato- vaster ashmeadi. Psyche 75: 233-248.




================================================================================

Beckers et 01. - Ant foraging strategy
LEUTHOLD, R. H.
1968,
Recruitment to food in the ant Cremastogaster ashmeadi. Psyche 75: 334-350.
LEUTHOLD, R. H.
1975.
Orientation mediated by pheromones in social insects. Proc. Symp. IUSSI. Pheromones and defensive secretions in social insects (P. Noirot, P. Howse and G. Le Masne, eds.), 197-21 I, Universitk de Dijon. LINDAUER, M. AND W. E. KERR
1958.
Die gegenseitige Verstandigung bei den stachellosen Bienen. Z. vergl. Physiol. 41: 405-434.
MASCHWITZ, U.
1975.
Old and new trends in the investigation of chemical recruitment in ants. Proc. Symp. IUSSI. Pheromones and defensive secretions in social insects (P. Noirot, P. Howse and G. Le Masne, eds.), 47-59, Universitk de Dijon.
MOFFET, M. W.
1988.
Foraging dynamics in the group-hunting myrmicine ant, Pheidologeton diversus. J. Ins. Behav. I: 309-331.
OSTER, G. F., AND E. 0. WILSON
1978.
Caste and Ecology in the Social Insects. Princeton University Press, Princeton.
PASTEELS, J. M., J. L. DENEUBOURG AND S. Goss 1985.
Transmission and amplification of information in a changing environ- ment: the case of insect societies. Laws of Nature in Human Conduct (I. Prigogine and M. Sanglier, eds.), 129- 156, G.O.R.D.E.S., Brussels. PASTEELS, J. M., J. L. DENEUBOURG AND S. Goss 1987.
Self-organization mechanisms in ant societies (I): Trail recruitment to newly discovered food sources. From Individual To Collective Behav- iour In Social Insects (J. M. Pasteels and J. L. Deneubourg, ed~.), 155- 176, Birkhauser, Basel.
ROSENGREN, R.
1971. Route fidelity, visual memory and recruitment behaviour in foraging wood ants of the genus Formica (Hym., Formicidae). Act. Zool. Fenn. 133: 1-106.
SEELEY, T. D.
1985.
Honeybee Ecology. Princeton University Press, Princeton. TRANIELLO, J. R.
1989. Foraging strategies in ants. Ann. Rev. Entomol. 34: 19 1-2 10. VAN VORHIS KEY, S. E., AND T. C. BAKER
1986.
Observations on the trail deposition and recruitment behaviors of the Argentine ant, Iridomyrmex humilis (Hymenoptera: Formicidae). Ann. Entomol. SOC. Am. 79: 283-288.
WEHNER, R., R. D. HARKNESS AND P. SCHMID-HEMPEL 1983.
Foraging strategies in individually searching ants Cataglyphis bicolor. Gustav Fischer Verlag, Stuttgart.
WILSON, E. 0.
1971.
The Insect Societies. Harvard University Press, Cambridge (Mass.).



================================================================================

Psyche
[Vol. 96
AGBOGBA, C.
198 I. L'approvisionnement en proies chez quelques espkces de fourmis. Coll. UIElS, sect franc., Toulouse, 18-22.
ALLOWAY, T. M.
1979.
Raiding behaviour of two species of slave making ants: Harpagoxenus americanus (Emery) and hptorhorax duloticus Wesson (Hymenoptera: Formicidae). Anim. Behav. 27: 202-210.
BERNARD, F.
1968.
Les Fourmis d9Europe Occidentale et Septentrionale. Masson et Cie, Paris.
BLUM, M. S. AND C. A. PORTOCARRERO
1966.
Chemical releasers of social behavior. X. An attine trail substance in the venom of a non-trail laying myrmicine, Daceton armigerum (Latreille) Psyche 73: 150- 155.
BLUM, M. S., J. C. MOSER AND A. D. CORDERO 1964.
Chemical releasers of social behaviour. 11. Source and specificity of the odor trail in four Attine genera. (Hym., Form.). Psyche 71: 1-7. BREED, M. D. AND B. BENNETT
1985.
Mass recruitment to nectar sources in Paraponera clavata: A field study. Ins. SOC. 32: 198-208.
BREEN, J.
1979.
Worker populations of Formica lugubris Zett. nests in Irish plantation woods. Ecol. Entomol. 4: 1-7.
BRIAN, M. V.
1972.
Population turnover in wild colonies of the ant Myrmica. Ekol. Pol. 20: 43-53.
BRIAN, M. V.
1977.
Ants. The new naturalist, Collins, London. BRIAN, M. v., G. ELMES AND A. F. KELLY
1967.
Populations of the ant Terramorium caespitum Latreille. J. Anim. Ecol. 36: 337-342.
B~SCHINGER, A.
1966. Untersuchungen an Harpagoxenus sublaevis Nyl. (Hym., Formicidae). I. FreilandBonn. Zool. Beitr. 22: 322-33 I. B~SCHINGER, A.
197 I. Zur Verbreitung der Sozialparasiten von kprorhorax acervorum (Fabr.) (Hym., Form.). Bonn. Zool. Beitr. 22: 322-33 I. CAGNIANT, H.
1983.
La Parthknogenkse Thklytoque et Arrhknotoque des ouvrikres de la fourmi Cataglyphis cursor (Fonscolombe) (Hym. Form.). Etude biomk- trique des ouvrikres et de leurs potentialitks reproductrices. Ins. SOC. 30: 24 1-254.
CAMMAERTS, M. C. AND R. CAMMAERTS
1980.
Food recruitment strategies of the ants Myrmica sabuleti and M. rugi- nodis. Behav. Processes. 5: 25 1-270.




================================================================================

19891
Beckers et al. - Ant foraging strategy
CHERIX, D.
1987.
Relation between diet and polyethism in Formica colonies. From Indi- vidual To Collective Behaviour In Social Insects (J. M. Pasteels and J. L. Deneubourg, eds.), 155- 176, Birkhauser, Basel. CHERIX, D. AND C. MADDALENA-FELLER
1987.
Foraging strategy in Formica bruni in relation to colony structure: An important step towards polycalism. Chemistry and Biology of Soil Insects (J. Eder and H. Rembold, eds.), 515-516 Verlag Peperny, Munchen.
DEJEAN, A.
1982.
Quelques aspects de la prkdation chez les fourmis de la tribu des Dace- tin;. (Formicidae-Myrmicinae). Thkse de Doctorat d'Etat. Universitk Paul Sabatier, Toulouse.
DEJEAN, A. AND E. P. BASHINGWA
1985.
La prkdation chez Odontomachus troglodytes Santschi (Formicidae- Ponerinae). Ins. SOC. 32: 23-42.
DOBRZANSKI, J.
1966.
Contribution to the ethology of Leptothorax acervorum. Acta Biol. Exper. (Warsaw) 26: 71-78.
ERICKSON, J. M.
1972.
Mark-recapture techniques for population estimates of Pogonomyrmex ant colonies: an evaluation of the P~~ technique. Ann. Ent. SOC. Am. 65: 57-6 I.
FOWLER, H. G.
1985.
Populations, foraging and territoriality in Dinoponera australis (Hyme- noptera, Formicidae). Revta bras. Ent. 29: 443-447. FRESNEAU, D.
1984.
Dkveloppement ovarien et statut social chez une fourmi primitive Neo- ponera obscuricornis Emery (Hym. - Form., Ponerinae). Ins. SOC. 31: 387-402.
FRESNEAU, D.
1985.
Individual foraging and path fidelity in a ponerine ant. Ins. SOC. 32: 109-1 16.
FUK~JMOTO, Y. AND T. ABE
1983.
Social organization of colony movement in the tropical ponerine ant Diacamma rugosum. J. Ethol. 1: 101-108.
G~SSWALD, K.
1951.
Die rote Waldameise im Dienste der Waldhygiene. Luneburg: Metta Kinau Verlag.
HAINAUT-RICHE, B., G. JOSENS AND J. M. PASTEELS 1980. L'approvisionnement du nid chez hsius fuliginosus: pistes, cy~les d'ac- tivitk et spkcialisation territoriale des ouvrih-es. C. R. UIEIS sect. franc. Lausanne, 7 1-78.
HASKINS, C. P. AND E. H. HASKINS
1950. Notes on the biology and social behavior of the archaic Ponerine ants of the genera Myrmecia and Promyrmecia. Ann. ent. SOC. Am., 43: 461-491.




================================================================================

Psyche
[Vol. 96
HEADLEY, A. E.
1943.
Population studies of two species of ants, Lxptothorax longispinosus and L.eptothorax curvispinosus Mayr. Ann. Entomol. SOC. Amer. 36: 743-753.
Holldobler, B. AND ENGEL
1978.
Tergal and sternal glands in ants. Psyche 85: 285-330. HOLLDOBLER~ B. AND E. 0. WILSON.
1970.
Recruitment Trails in the harvester ant Pogonomyrmex badius. Psyche 77: 385-399.
H~LLDOBLER? B. AND E. 0. WILSON
1978. The multiple recruitment systems of the african weaver ant Oecophylla longinoda. Behav. Ecol. Sociobiol. 3: 19-60. H~LLDOBLER, B., M. M~GLICH AND U. MASCHITZ 1974. Communication by Tandem Running in the ant Camponotus sericeus. J. Comp. Physiol. 90: 105- 127.
H~LLDOBLER, B., R. C. STANTON AND H. MARKUL 1978.
Recruitment and food-retrieving behavior in Novomessor (Formicidae, Hymenoptera). Behav. Ecol. Sociobiol. 4: 163- 18 I. HORSTMANN, K.
1982.
Die Energiebilanz der Waldameisen (Formica polyctena Forster) in einem Eichenwald. Ins. SOC. 29: 402-421. ITO, M.
1973. Seasonal population trends and nest structure in a polydomous ant, Formica (Formica) yessensis Fore1 (Hym., Formicidae). J. Fac. Sci. Hokkaido Univ., Ser. VI, Zool., 19: 270-293. JAFFE, K. AND P. E. HOWSE
1979. The mass recruitment system of the leaf-cutting ant Atta cephalotes (L.). Anim. Behav., 27: 930-939.
JAFFE, K. AND M. MARCUSE
1983.
Nestmate recognition and territorial behaviour in the ant Odontoma- chus bauri Emery (Formicidae Ponerinae). Ins. SOC. 30: 466-48 I. JAFFE, K., AND G. Villegas
1985. On the communication system of the fungus growing ant Trachimyrmex urichi. Ins. SOC. 32: 257-274.
JAYASURIA, A. K. AND J, F. A. TRANIELLO
1985. The Biology of the primitive ant Aneuretus simoni (Emery) (Formicidae: Aneuretinae). I. Distribution, abundance, colony structure, and foraging ecology. Ins. SOC. 32: 363-375.
JENSEN, T. F.
1977.
Annual foraging activity of a colony of Formicapratensis Retz. Proceed- ings VIIIth International Congress IUSSI, Wageningen, 217-218. KRUK-DE-BRUIN, M., L. C. M. ROST AND F. G. A. M. DRAISMA 1977.
Estimates of the number of foraging ants with the Lincoln-index method in relation to the colony size of Formica polyctena. J. Anim. Ecol. 46: 457-470.
LACHAUD, J. P., D. FRESNEAU AND J. GARCIA-PEREZ 1984.
Etude des stratkgies d'approvisionnement chez 3 espkces de fourmis ponerines (Hym.: Formicidae). Folia Entomol. Mex. 61: 159- 177.



================================================================================

Beckers et al. - Ant foraging strategy
LANE, A.
1977.
Recrutement et orientation chez la fourmi Leptothorax un~asciatus (Latr.): Rble de la piste et des tandems. Thkse de 3e cycle, Dijon, p. 124. LAVIGNE, R. J.
1969.
Bionomics and nest structure of Pogonomyrmex occidentalis. Ann. Ent. SOC. Am. 62: 1 166- 1 175.
LAW, J. H., A. RAIGNIER, AND E. 0. WILSON. 1965.
Biochemical polymorphism in ants. Science 149: 544-546. LEMASNE, G.
1952.
Les kchanges alimentaires entre adultes chez la fourmi Ponera eduardi Forel. C. R. Acad. Sci. Paris D 235: 1549-1 55 I. LEVIEUX, J.
1983.
Mode d'exploitation des ressources alimentaires kpigkes de savanes afri- caines par la fourmi Myrmicaria eumenoides Gerstaecker. Ins, SOC. 30: 165-176.
MARSH, A. C.
1985.
Microclimatic factors influencing foraging patterns and success of the thermophilic desert ant, Ocymyrmex barbiger. Ins. SOC. 32: 286-296. MASCHWITZ, U. AND M. MUHLENBERG
1975.
Zur Jagdstrategie einiger orientalischer Leptogenys-Arten (Formicidae: Ponerinae). Oecologia 20: 65-83.
MASCHWITZ, U. AND P. SCH~NEGGE
1983.
Foraging communication, nest moving recruitment and prey specializa- tion in the oriental ponerine Leptogenys chinensis. Oecologia 57: 175- 182.
MEUDEC, M.
1979.
Comportement d'kmigration chez la fourmi Tapinoma erraticum (Form. Dolichoderinae). Un exemple de rkgulation sociale. Thkse, Universitk de Tours.
MILL, A. E.
1982.
Emigration of a colony of the giant Termite hunter Pachycondyla com- munata (Roger) (Hymenoptera: Formicidae). Entomologist's monthly magazine 118: 243-245.
MILL, A. E.
1984.
Predation by the Ponerine ant Pachycondyla communata on termites of the genus Syntermes in Amazonian rain forest. J. Nat. Hist. 18: 405-410. MOFFET, M. W.
l986a. Trap-jaw predation and other observations on two species of Myrmote- ras (Hymenoptera: Formicidae). Ins. SOC. 33: 85-99. MOFFET, M. W.
1986b.
Notes on behavior of the dimorphic ant Oligomyrmex ocerbecki (Hymenoptera: Formicidae). Psyche 93: 107- 1 16. MOFFET, M. W.
1986~. Behavior of the group predatory ant Proatta butteli (Hymenoptera: Formicidae): an old world relative of the attine ants. Ins. SOC. 33: 444-457.




================================================================================

Psyche
[Vol. 96
MOFFET, M. W.
1988.
Nesting, emigrations, and colony foundation in two group-hunting Myrmicine ants (Hymenoptera: Formicidae: Pheidologeton). Advances in Myrmecology, E. J. Brill, Leiden, ed. Trager, J. C.: 355-370. MOGLICH, M.
1979.
Tandem calling pheromone in the genus Leptothorax (Hym., Formici- dae): Behavioral analysis of specificity. J. Chem. Ecol. 5: 35-52. MOGLICH, M. AND B. HOLLDOBLER
1975.
Communication and orientation during foraging and emigration in the ant Formica fusca. J. Comp. Physiol. 101: 275-288. MOGLICH, M., U. MASCHWITZ AND B. HOLLDOBLER 1974.
Tandem calling: a new kind of signal in ant communication. Science 186: 1046- 1047.
MOSER, J. C. AND M. S. BLUM
1963.
Trail marking substances in the Texas leaf-cutting ant: Source and po- tency. Science 140: 1228.
PASTEELS, J. M., J. L. DENEUBOURG AND S. Goss 1987.
Self-organization mechanisms in ant societies (I): Trail recruitment to newly discovered food sources. From Individual to Collective Behaviour In Social Insects (J. M. Pasteels and J. L. Deneubourg, eds.), 155-176, Birkhauser, Basel.
PEACOCK, A. D., F. L. WATERHOUSE AND A. T. BAXTER 1955.
Studies in Pharaoh's ant Monomorium pharaonis (L.) 10. Viability in regard to temperature and humidity. Entomologists' Monthly magazine 86: 294-298.
PEETERS, C. AND R. CREWE
1987.
Foraging and recruitment in ponerine ants: Solitary hunting in the queenless Ophthalmopone berthoudi (Hymenoptera: Formicidae). Psyche 94: 20 1-2 14.
PETAL, J.
1972.
Methods of investigating the productivity of ants. Ekol. polsk. 94: 9-22. PRICER, J. L.
1908. The life history of the carpenter ant. Biological Bulletin, Marine Biologi- cal Laboratory, Woods Hole, 14: 177-21 8. QUINET, Y. AND J. M. PASTEELS
1987.
Description et evolution spatio-temporelle du rkseau de pistes chez Lasius fuluginosus. Actes Coll. Ins. Soc. 4: 21 1-21 8. RAIGNIER, A. AND J. VAN BOVEN
1955.
Etude taxonomique, biologique et biomktrique des Dorylus du sous- genre Anomma (Hymenoptera, Formicidae). Annales du Musee Royal du Congo Beige, n.s. 4, Sc. Zool., 2: 1-359. RETTENMEYER, C. W.
1963.
Behavioral studies of army ants. Kansas University Science Bulletin, 44: 28 1-465.
RILEY, R. G., R. M. SILVERSTEIN, B. CARROL AND R. CARROL 1974.
Methyl 4-Methylphyrole-2-Carboxylate: A volatile trail pheromone from the leaf-cutting ant Atta cephalotes. J. Ins. Physiol. 20: 65 1-654.



================================================================================

19891 Deckers et al. - Ant foraging strategy 255 ROBERTSON, P. L.
1971.
Pheromones involved in aggressive behaviour in the ant, Myrmecia gulosa. J. Insect Physiol, 17: 691-7 15. ROSENGREN, R.
197 1.
Route fidelity, visual memory and recruitment behaviour in foraging Wood ants of the genus Formica (Hym. Formicidae). Acta Zool. Fen. 133: 3-9 1.
SCHNEIRLA, T. C.
1957.
A comparison of species and genera in the ant sub-family Dorilinae with respect to functional pattern. Ins. Soc. 4: 259-298. SCHNEIRLA, T. C.
1965.
Cyclic functions in genera of legionary ants (Subfamily Dorylinae). Proceedings of the Twelfth International Congress of Entomology, London, 1964, pp. 336-338.
STRADLING, D. J.
1970.
The estimation of worker ant populations by the mark-release-recapture method: an improved marking technique. J. Anim. Ecol. 39: 575-591. SUDD, J. H.
1960. The foraging method of Pharaoh's ant Monomorium pharaonis. Anim. Behav., London, 8: 67-75.
SUDD, J. H., AND N. FRANKS
1987.
The Behavioural Ecology of Ants.Blackie, Glasgow. TALBOT, M.
1957.
Population studies of the slave making ant Leptothorax duloticus and its slave Leptothorax curvispinosus. Ecology, 38: 449-456. TALBOT, M.
1965.
Populations of ants in a low field. Ins. Soc. 12: 19-48. TOPOFF, H., J. MIRENDA, R. DROUAL AND S. HERRICK 1980.
Behavioral ecology of mass recruitment in the army ant Neivamyrmex nigrescens. Anim. Behav. 28: 779-789.
TRANIELLO, J. F. A.
1977.
Recruitment behaviour, orientation, and the organization of the forag- ing in the carpenter ant Camponotuspennsylvanicus. Behav. Ecol. Soci- obiol. 2: 61-79.
TRANIELLO, J. F. A.
1978.
Caste in a primitive ant: Absence of age polyethism in Amblyopone. Science 202: 770-772.
TRANIELLO, J. F. A. AND B. HOLLDOBLER
1986. Chemical communication during tandem running in Pachycon&la ob- scuricornis. J. Chem. Ecol. 7: 1023- 1033. TRANIELLO, J. F. A. AND A. K. JAYASURIYA 1986.
The fire ant, Solenopsis invicta, as a successful "weed". J. Chem. Ecol. 7: 1023- 1033.
TSCHINKEL, W. R.
1981.
Chemical communication in the primitive ant Aneuretis simoni: the role of the sternal and pygidial glands. Chemistry and Biology of Soil Insects (J. Eder and H. Rembold, eds.), 515-585-588, Verlag Peperny, Munchen.




================================================================================

Psyche [VOI. 96
VERHAEGHE, J. C., P. CHAMPAGNE AND J. M. PASTEELS 1980.
Le recrutement alimentaire chez Tapinoma erraticum (Hym, Form.). Bio1.-Ecol. mkditerrankenne 7: 167- 168. VOSSELER, J.
1905.
Die Ostafrikanische Treiberameise. Der Pflanzer 1: 284-302. WALLIS, D. I.
1964.
The foraging behaviour of the ant Formica fusca. Behaviour 23: 149-175.
WAY, M. J.
1954.
Studies of the life history and ecology of the ant Oecophylla longinoda Latreille. Bull. Ent. Res. 45: 93-1 12.
WEHNER, R., R. D. HARKNESS AND P. SCHMID-HEMPEL 1983.
Foraging Strategies in Individually Searching Ants. Cataglyphis bicolor (Hymenoptera: Formicidae). Gustav Fischer Verlag, Stuttgart, New York.
WILSON, E. 0.
1962. Chemical communication among workers of the fire-ant Solenopsis sae- vissima (Fr. Smith). 1. The organization of mass foraging. 2. An infor- mation analysis of the odour trail. 3. The experimental induction of social responses. Anim. Behav. 10: 134- 164. WILSON, E. 0.
1976.
A social ethogram of the neo-tropical arboreal ant Zacryptocerus var- ians (Fr. Smith). Anim. Behav. 24: 354-363. WILSON, E. 0.
1986. Caste and division of labour in Erebomyrma, a genus of dimorphic ants (Hymenoptera: Formicidae: Myrmicinae). Ins. Soc. 33: 59-69. WILSON, E. 0. AND B. H~LLDOBLER
1985.
Caste-specific techniques of defense in the polymorphic ant Pheidole embolopyx (Hymenoptera: Formicidae). Ins. Soc. 32: 3-22. ZAKHAROV, A. A.
1978. Estimate of the population numbers in the complex of formicaria. Zool. Zh. 57: 1656- 1662.




================================================================================


Volume 96 table of contents